Ddom-nn.ru

Домашний Мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики теплопроводности разных видов кирпича

Характеристики теплопроводности разных видов кирпича

  • 1 Краткое описание закона Фурье
  • 2 Уровень показателя силикатных изделий
  • 3 Величина показателя красного кирпича
  • 4 Заключение

Водостойкость, морозоустойчивость, теплопроводность кирпича, а также другие характеристики этого материала делают его прочным и долговечным. Данный вид строительной продукции способен выдержать не только сильные нагрузки, но и долгое испытание временем в процессе эксплуатации конструкции.

Удержание тепла в доме зависит от материала стен. Кирпичные стены удерживают тепло на хорошем уровне.

Возможность материала пропускать через себя тепло независимо от температурных изменений, которым подвергается кирпич, — теплопроводность. Она, как и другие полезные свойства изделия, делает этот материал одним из лучших видов строительной продукции.

Что обозначает показатель?

Каждый стройматериал выделяется своей теплопроводностью. Этим показателем характеризуется способность удерживать тепло в доме. У бетона, дерева и кирпича эта характеристика имеет разные значения. Чем ниже значение показателя, тем лучше у него сопротивление теплопередаче. Но следует учитывать, что уровень теплоизоляции увеличивается при уменьшении плотности стройматериала. Это делает блоки более легкими, поэтому при возведении двухэтажного дома лучше выбрать пустотелый материал для уменьшения давления на фундамент дома. Толщина кирпичной кладки меняется в зависимости от теплопроводности стройматериала. Для экономии строительства используется двойной блок. Для оценки теплоизоляционных свойств утеплителя используют коэффициент теплотехнической однородности.

Что такое теплопроводность

Этот термин обозначает способность материала передавать тепловую энергию. Эту способность, в данном случае, выражает коэффициент теплопроводности кирпича. У клинкерного этот показатель составляет порядка 0,8… 0,9 Вт/м К.

Силикатный обладает меньшей теплопроводностью и в зависимости от количества пустот, в нем содержащихся, подразделяется на: щелевой (0,4 Вт/м К), с техническими пустотами (0, 66 Вт/м К), полнотелый (0,8 Вт/м К).

Керамический является еще более легким, вследствие чего данный показатель у него еще более низкий. Для полнотелого кирпича он находится в пределах 0,5… 0,8 Вт/м К, для щелевого – 0,34… 0,43 Вт/м К и для поризованного – 0,22 Вт/м К. Кирпич пустотелый характеризуется коэффициентом теплопроводности, равным 0,57 Вт/м К. Данный показатель не постоянен и меняется в зависимости от пористости материала, количества и расположения пустот.

Утверждение, что кирпич обладает высокой теплопроводностью, не совсем корректно: некоторые виды этого материала проводят тепло даже хуже, чем газобетонные блоки. Сочетание прочностных качеств полнотелых кирпичей и теплоизолирующих свойств пустотелых (а еще лучше – поризованной керамики) позволяет возводить надежные и энергоэкономичные здания.

Рассчет теплопроводности стен: таблица теплосопротивления материалов

Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.

Итак, немного теории, чтобы определиться с терминами и понять, как рассчитать теплосопротивление стены.

Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью.
Итак, теплопроводность – это количественная оценка способности конкретного вещества проводить тепло.
Теплосопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью и низким теплосопротивлением).
То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла.

Читать еще:  Облицовочный кирпич для фасада размеры

Как рассчитать теплопроводность стены?

Чтобы рассчитать теплосопротивление слоя нужно его толщину в метрах разделить на коэффициент теплосопротивления материалов, из которых он выполнен.
Как рассчитать коэффициент теплопроводности? Эти расчеты делаются в лабораторных условиях. Тем не менее, узнать его несложно: нормальный производитель всегда предоставляет эти данные, указан он и в СНиПе в разделе «Строительная теплотехника», правда, там представлены не все современные материалы. Если вы хотите знать теплосопротивление материалов, таблица с некоторыми из них представлена на данной странице.

Как пользоваться коэффициентом теплопроводности? В СНИПе указано два режима эксплуатации А и Б. Режим А подходит для сухих помещений (влажность меньше 50%) и для районов, удаленных от морских берегов. Для московского региона, например, подходит режим А. Таким образом, теплосопротивление стен по регионам может отличаться.

Теплосопротивление слоя =толщина слоя (м)
Коэффициент теплопроводности материала ( )

Теплосопротивление многослойной конструкции считается как сумма теплосопротивлений каждого слоя. (В случае с одним слоем все просто – его теплосопротивление и будет теплосопротивлением всей конструкции.)

Теплосопротивление конструкции = теплососпротивление слоя 1 + теплосоротивление слоя 2 + и т.д.

Единицы измерения теплосопротивления —

Рассмотрим, как рассчитать толщину стены по теплопроводности на конкретных примерах.

Пример 1

Стена толщиной в полтора кирпича, или, если перевести в международную систему измерения, 0,37 метра (37 сантиметров). Как посчитать теплопроводность стены?

Все, кто имел опыт работы с кирпичом, знают, что кирпич может быть разным. И коэффициент теплопроводности кирпичной кладки, соответственно, тоже разный. Кроме того, теплопроводность кирпичной стены на обычном цементно-песчаном растворе будет ниже, чем коэффициент отдельного кирпича. Как посчитать коэффициент теплопроводности стены в таком случае? Для расчетов будет правильно использовать именно значение для кладки.

Вид кирпичаКоэффициент
теплопро-
водности*,
Кирпичная кладка
на цементно-песчаном
растворе, плотность
1800 кг/м³*
Теплосопроти-
вление стены толщи-
ной 0,37 м,
Красный глиняный (плотность 1800 кг/м³)0,560,700,53
Силикатный, белый0,700,850,44
Керамический пустотелый (плотность 1400 кг/м³)0,410,490,76
Керамический пустотелый (плотность 1000 кг/м³)0,310,351,06

(*из межгосударственного стандарта ГОСТ 530-2007)

Итак, мы убедились, что не все кирпичи одинаковы. И теплопроводность кирпичной кладки в зависимости от вида кирпича может отличаться в 2 раза. Ваш дом из какого кирпича? А мы рассмотрим самый лучший результат (плотность кирпичной кладки полтора керамических пустотелых кирпича). В данном случае теплосопротивление кирпича 1,06 . Запомним результат и перейдем к следующему примеру.

Пример 2

Допустим, мы хотим построить дачный домик из бруса сечением 15 см. Снаружи и изнутри отделаем вагонкой. Что получим? Коэффициент теплосопротивления дерева поперек волокон (данные из СНиПов) составляет 0,14 . Теперь делаем расчет теплосопротивления стены: толщину материала разделим на коэффициент теплопроводности.

Для бруса (это 0,15 м дерева) теплосопротивление составит (0,15/0,14) 1,07 .

Для вагонки (толщина 20 мм или 0,02 м) – 0,143 . Да, вагонка с двух сторон, значит 0.143 х 2 = 0,286 . Справедливости ради заметим, что на практике теплосопротивлением вагонки чаще всего пренебрегают, так как на стыках она имеет еще меньшую толщину, следовательно, меньшее теплосопротивление материала.

Запомним общее расчетное теплосопротивление стены из 15-исантиметрового бруса, обшитого изнутри и снаружи вагонкой, –
1,356 .

Чтобы не было необходимости делать расчёт теплосопротивления стены для каждого материала, в приведенной здесь таблице мы собрали данные по теплосопротивлению материалов, часто используемых при строительстве домов.

Таблица теплосопротивления материалов

МатериалТолщина
материала (мм)
Расчетное теплосо-
противлениеа (м² * °С / Вт)
Брус1000,71
Брус1501,07
Кладка из красного кирпича
(плотность 1800 кг/м³)
380
(полтора кирпича)
0,53
Кладка из белого силикатного кирпича380
(полтора кирпича)
0,44
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³)380
(полтора кирпича)
0,76
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³)380
(полтора кирпича)
1,06
Кладка из красного кирпича
(плотность 1800 кг/м³)
510
(два кирпича)
0,72
Кладка из белого силикатного кирпича510
(два кирпича)
0,6
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³)510
(два кирпича)
1,04
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³)510
(два кирпича)
1,46
Кладка на клей из газо- пенобетонных блоков (плотность 400 кг/м³)2001,11
Кладка на клей из газо- пенобетонных блоков (плотность 600 кг/м³)2000,69
Кладка на клей керамзитобетонных блоков на керамзитовом песке и керамзитобетоне (плотность 800 кг/м³)2000,65
Теплоизоляционные материалы
Плиты из каменной ваты ROCKWOOL ФАСАД БАТТС501,25
Ветрозащитные плиты Изоплат250,45
Теплозащитные плиты Изоплат120,27

Снова обратимся к СНиПам: теплосопротивление наружной стены, например, в Московской области должно быть не меньше 3 . Помните цифры, которые мы получили? В Российской Федерации нет районов, для которых эта величина составляла хотя бы 1,5 (не говоря уже о значениях еще ниже). Для сравнения приведем такие данные: в Германии эта норма определена не менее 3,4 , в Финляндии — не менее 5 (это, разумеется, уже не по нашим СНиПам, а по их регламентирующим документам).

Эти требования — для домов постоянного проживания. Если дом (как написано в СНиПах) предназначен для сезонного проживания, либо отапливается менее 5 дней в неделю, эти требования на него не распространяются.
Итак мы можем сделать вывод, что в домах со стенами в 1,5 кирпича, либо из бруса в 15 см проживать постоянно… нежелательно. Но ведь живем же! Да, только цена отопления 1 м³ из года в год становится все выше. Со временем все домовладельцы перейдут к эффективному утеплению домов — экономические соображения заставят заранее рассчитать теплопроводность стены и выбрать наилучшее техническое решение.

Коэффициент теплопроводности

Способность стены передавать тепло — называется «теплопроводностью стены». Для числового определения параметров теплопроводности применяют коэффициент теплопроводности — λ (лямбда) , измеряемый в Вт/(м2*С°). Суть коэффициента: чем он меньше, тем ниже будут затраты на отопление.

Теплопроводность кирпича сильно варьируется в зависимости от его состава, влажности и плотности. То есть чем выше плотность кирпича, тем его теплопроводность выше. Например теплопроводность силикатного кирпича(90 % — кварцевый песок плюс 10 % извести), ниже теплопроводности керамического кирпича(обожженная глиняно-песчаная смесь). Следовательно силикатный кирпич способен дольше, чем керамический удерживать тепло, поэтому его в основном применяют в отделке кирпичных фасадов.

По плотности кирпичную продукцию делят на три большие группы:

  • обыкновенный кирпич, плотность 1700—1800 кг/м³ ;
  • условно-эффективный кирпич (1400—1600 кг/м³);
  • эффективный кирпич (менее 1100 кг/м³);

В первую группу входят полнотелые кирпичи, коэффициент λ которой составляет 0,6-0,7 Вт/(м2*С°). Вторую группу представляют пустотные кирпичи с долей пустот от 5 до 40 % и λ = 0,35-0,5 Вт/(м2*С°). И наконец третья группа — это группа поризованных кирпичей с коэффициентом λ= 0,18-0,25 Вт/(м2*С°).

Благодаря такому многообразию форм и составу кирпича, а так же широкой вариативности кирпичной кладки, эксплуатационные характеристики и толщину кирпичной стены можно варьировать. Снижение коэффициента теплопроводности достигается путем создания во время кладки замкнутых воздушных камер.

Понятие о теплопроводности

Эта характеристика имеет важное значение в строительстве. Существует несколько взаимосвязанных вариантов подхода к оценке движения тепла в материалах:

  1. Способность предметов передавать нагрев от одной части целого к другой посредством последовательного перемещения хаотически колеблющихся частиц тела (молекул, электронов и атомов) от подвижных в сторону неактивных — холодных — называют теплопроводностью. Не следует путать этот показатель с термическим сопротивлением, которое свидетельствует о способности препятствовать перемещениям нагретых молекул.
  2. Коэффициент теплопроводности λ – способность физического тела передавать энергию за определённое время через единичную площадь при падении температуры на градус к наикратчайшей длине до изотермической поверхности. Другими словами, λ показывает, сколько тепла теряется за период прохождения сквозь стену. Принятая в технических расчётах размерность показателя — Вт/м·°C.
  3. Удельная теплопроводность Λ=λ/δ, где δ – толща преграды в метрах: Вт/м²·°C. Обратной величиной этой характеристики является термическое сопротивление: 1/Λ – оно оценивает препятствование 1 м² площади предмета перетоку энергии нагрева за час при разности температур поверхностей в 1°C. Другое название характеристики — коэффициент теплоизоляции, размерность: м²·°C/Вт.

В этом видео вы узнаете о характеристиках кирпича:

При выборе материалов обычно обращают внимание на 2 показателя: термическое сопротивление, определяемое из соотношения 1/(λ/δ), и гораздо чаще применяемый коэффициент теплопроводности λ. Если значения первой характеристики возрастают, это свидетельствует о возможности употребить материал для изоляции. И наоборот, низкие цифры указывают на использование в качестве проводника температуры. Чем выше коэффициент теплопроводности, тем потери нагрева здания весомее, а малые значения свидетельствуют об эффективном в части энергосбережения материале стен.

Морозостойкость

Морозостойкость определяется путем циклов заморозки и размораживания. Данный параметр важен при выборе вида кирпича для укладывания несущих стен. Марка зависит от количества циклов и указывается на изделиях. Наиболее высокой морозостойкостью обладает облицовочный и красный кирпич, который хорошо выдерживает температуру до -50 градусов Цельсия и ниже. Если у вас используется силикатный кирпич, его свойства хуже, поэтому кладку придется делать в два слоя. Не подойдет силикат и для строительства фундамента.

В условиях зимней непогоды тепло в доме сохраняется за счет обогревательного котла отопительной системы. Но для того чтобы не происходило рассеивания тепла, нужны стены, пол и потолок из соответствующего материала, хорошо сохраняющего заданную температуру. Тип кирпичной кладки играет в ходе строительства немаловажную роль. Выбирать материал следует, учитывая все параметры и погодные условия.

В следующем видео вас ждет обзор теплопроводности кирпича ШБ 8.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector